[1.8] - Energy Changes in Reactions Metersteiner Metersteiner Metersteiner

TAKE AWAY ENERGY

Energy Changes

• Energy is measured in Joules (J) or kilojoules (kJ)

• Enthalpy: change in energy

Reactions with Energy Changes Exothermic Reaction: Gives off (releases) heat to its surroundings. Heat **EXITS** the reaction Surroundings System Heat **Endothermic Reaction**: Absorbs heat from its Surroundings surroundings. Heat **ENTERS** the reaction System Heat

Exothermic Reactions

- Exothermic reactions give off energy
- Energy is measured in **kJ** or **J**
- Change in energy (enthalpy) is negative indicating lose in energy
- Energy can also be written as a **product**

$$2 NO_2(g) \longrightarrow N_2O_4(g)$$
 $\Delta H = -57.6 kJ$

- $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + Heat$
 - $C + O_2 \rightarrow CO_2 + Heat$
 - $2H_2 + O_2 \rightarrow 2H_2O + Heat$

Exothermic Reactions: Free Energy Diagrams

- Energy diagrams are visual representations of the change in energy in a reaction
- Activation Energy: The maximum amount of energy needed for the reaction to occur
- Enthalpy (ΔH): Amount of energy released/absorbed

Endothermic Reactions

- Endothermic reactions take in energy
- Energy is measured in **kJ** or **J**
- Change in energy (enthalpy) is positive indicating gain in energy
- Energy can also be written as a **reactant**

$$N_{2}(g) + O_{2}(g) \longrightarrow 2 \text{ NO}(g) \qquad \Delta H = + 181 \text{ kJ}$$

$$PCl_{5}(g) \longrightarrow PCl_{3}(g) + Cl_{2}(g) \quad \Delta H = + 92.5 \text{ kJ}$$

$$N_{2}O_{4(g)} + \text{ energy} \rightarrow 2NO_{2(g)}$$

Endothermic Reactions: Free Energy Diagrams

- Energy diagrams are visual representations of the change in energy in a reaction
- Activation Energy (E_A) : The maximum amount of energy needed for the reaction to occur
- Enthalpy (ΔH): Amount of energy released/absorbed

Which energy diagram shows exothermic? Endothermic?

What is the activation energy of the reaction?

Answer:

Activated complex

(a)

Reaction Pathway

(b)

(c)

Products

400

300

200

100

Potential

Energy

<u>Answer</u>: Endothermic – system is gaining energy

What is the enthalpy change of the the reaction?

<u>Answer</u>: The enthalpy change (Δ H) is seen on section (c) of the graph Δ H = Final Energy – Initial Energy = 300 kJ – 100 kJ Reactants -

What is the activation energy of the reaction?

Answer: The activation energy is seen on section (a) of the graph.

$$E_A = Final Energy - Initial Energy$$

$$= 400 \text{ kJ} - 100 \text{ kJ}$$

= 300 kJ

- $2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(l) \quad \Delta H = -482 \text{ kJ}$
- Is the following reaction exothermic or endothermic?
 - Answer:
- Draw a fully labelled energy diagram for the reaction. (Include energy values on axis)
 - Answer:

$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(l) \quad \Delta H = -482 \text{ kJ}$$

Is the following reaction exothermic or endothermic?

<u>Answer</u>: Exothermic – the reaction is <u>losing</u> energy (ΔH is negative)

Draw a fully labelled energy diagram for the reaction. (Include energy values on axis)

Homework Homework [1.8] on Handout

